Abstract

Reporter genes are powerful technologies that can be used to directly inform on the fate of transplanted cells in living subjects. Imaging reporter genes are often employed to quantify cell number, location(s), and viability with various imaging modalities. To complement this, reporters that are secreted from cells can provide a low-cost, in vitro diagnostic test to monitor overall cell viability at relatively high frequency without knowing the locations of all cells. Whereas protein-based secretable reporters have been developed, an RNA-based reporter detectable with amplification inherent PCR-based assays has not been previously described. MicroRNAs (miRNAs) are short non-coding RNAs (18–22 nt) that regulate mRNA translation and are being explored as relatively stable blood-based disease biomarkers. We developed an artificial miRNA-based secreted reporter, called Sec-miR, utilizing a coding sequence that is not expressed endogenously and does not have any known vertebrate target. Sec-miR was detectable in both the cells and culture media of transiently transfected cells. Cells stably expressing Sec-miR also reliably secreted it into the culture media. Mice implanted with parental HeLa cells or HeLa cells expressing both Sec-miR and the bioluminescence imaging (BLI) reporter gene Firefly luciferase (FLuc) were monitored over time for tumor volume, FLuc signal via BLI, and blood levels of Sec-miR. Significantly (p<0.05) higher Sec-miR was found in the blood of mice bearing Sec-miR-expressing tumors compared to parental cell tumors at 21 and 28 days after implantation. Importantly, blood Sec-miR reporter levels after day 21 showed a trend towards correlation with tumor volume (R2 = 0.6090; p = 0.0671) and significantly correlated with FLuc signal (R2 = 0.7067; p<0.05). Finally, we could significantly (p<0.01) amplify Sec-miR secretion into the cell media by chaining together multiple Sec-miR copies (4 instead of 1 or 2) within an expression cassette. Overall, we show that a novel complement of BLI together with a unique Sec-miR reporter adds an in vitro RNA-based diagnostic to enhance the monitoring of transplanted cells. While Sec-miR was not as sensitive as BLI for monitoring cell number, it may be more sensitive than clinically-relevant positron emission tomography (PET) reporter assays. Future work will focus on improving cell detectability via improved secretion of Sec-miR reporters from cells and more sensitive detection platforms, as well as, exploring other miRNA sequences to allow multiplexed monitoring of more than one cell population at a time. Continued development may lead to more refined and precise monitoring of cell-based therapies.

Highlights

  • Precise tracking of cell-based therapies can become a reality if technologies for measuring transplanted cell numbers, location(s), viability, and cell status are utilized in the clinic [1]

  • Many imaging reporters exist for use at both the pre-clinical level such as Firefly luciferase (FLuc) and/or Renilla Luciferase (Rluc) for bioluminescence imaging (BLI) [2,3,4], or various reporters for clinical modalities such as magnetic resonance imaging (MRI) [5,6,7], single photon emission computed tomography (SPECT) [8], and positron emission tomography (PET) [9, 10]

  • We have successfully developed an RNA-based secreted reporter and demonstrate that it can be used in concert with imaging reporter genes to monitor the proliferation of transplanted cells in living subjects

Read more

Summary

Introduction

Precise tracking of cell-based therapies (e.g., stem cells, immune cells, etc.) can become a reality if technologies for measuring transplanted cell numbers, location(s), viability, and cell status are utilized in the clinic [1] This could allow clinicians to directly monitor therapeutic effectiveness in individual patients and give information on both subsequent treatment decisions and a patient’s overall prognosis. Limit estimates with a clinical PET scanner include ~100x106 human mesenchymal stem cells injected into porcine myocardium [12] One solution to these issues is to combine an imaging reporter assay with a relatively cheap and sensitive in vitro blood-based reporter assay. This combined in vivo imaging with an in vitro diagnostic reporter gene strategy is gaining popularity among those developing new reporter gene technologies [13, 14], and has recently been utilized in several gene-based cancer detection technologies in small animals [15,16,17,18]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call