Abstract

Enantioselective C-H amidation offers attractive means to assemble C-N bonds to synthesize high-added value, nitrogen-containing molecules. In recent decades, complementary enzymatic and homogeneous-catalytic strategies for C-H amidation have been reported. Herein, we report on an artificial metalloenzyme (ArM) resulting from anchoring a biotinylated Ir-complex within streptavidin (Sav). The resulting ArM catalyzes the enantioselective amidation of unactivated C(sp3)-H bonds. Chemogenetic optimization of the Ir cofactor and Sav led to significant improvement in both the activity and enantioselectivity. Up to >700 TON and 92% ee for the amidation of unactivated C(sp3)-H bonds was achieved. The single crystal X-ray analysis of the artificial nitrene insertase (ANIase) combined with quantum mechanics-molecular mechanics (QM-MM) calculations sheds light on critical second coordination sphere contacts leading to improved catalytic performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.