Abstract

Digital terrain modeling is widely used in geological studies. In some cases, orthogonal and diagonal linear patterns appear on maps of local topographic variables. These patterns may be both portrayals of geological structures and artefacts. Some researchers speculated that possible anisotropy of operators of local topographic variables might be a cause of these artefacts. Using a principle for testing derivative operators in image processing, we gave proof to isotropy (rotation invariability) of operators of a majority of local topographic attributes of the complete system of curvatures (i.e., slope gradient, horizontal curvature, vertical curvature, mean curvature, Gaussian curvature, accumulation curvature, ring curvature, unsphericity curvature, difference curvature, minimum curvature, maximum curvature, horizontal excess curvature, and vertical excess curvature). Rotating an elevation function about z-axis and then applying these operators cannot lead to variations in both values of the topographic variables and patterns in their maps, comparing with results of applying these operators to an unrotated elevation function. This demonstrates that linear artefacts with preferable directions in maps of the topographic attributes specified cannot be caused by intrinsic properties of their operators. Other possible sources for false linear patterns in maps of topographic variables are briefly discussed: (a) errors in the compilation of digital elevation models (DEMs), (b) grid geometry of digital terrain models (DTMs), (c) errors in DEM interpolation, (d) imperfection of algorithms for DTM derivation, and (e) aliasing errors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call