Abstract

The dreaded coronavirus (COVID-19) disease traceable to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) has killed thousands of people worldwide, and the World Health Organization (WHO) has proclaimed the viral respiratory disease a human pandemic. The adverse flare of COVID-19 and its variants has triggered collaborative research interests across all disciplines, especially in medicine and healthcare delivery. Complex healthcare data collected from patients via sensors and devices are transmitted to the cloud for analysis and sharing. However, it is pretty difficult to achieve rapid and intelligent decisions on the processed information due to the heterogeneity and complexity of the data. Artificial intelligence (AI) has recently appeared as a promising paradigm to address this issue. The introduction of AI to the Internet of Medical Things (IoMT) births the era of AI of Medical Things (AIoMT). The AIoMT enables the autonomous operation of sensors and devices to provide a favourable and secure environmental landscape to healthcare personnel and patients. AIoMT finds successful applications in natural language processing (NLP), speech recognition, and computer vision. In the current emergency, medical-related records comprising blood pressure, heart rate, oxygen level, temperature, and more are collected to examine the medical conditions of patients. However, the power usage of the low-power sensor nodes employed for data transmission to the remote data centres poses significant limitations. Currently, sensitive medical information is transmitted over open wireless channels, which are highly susceptible to malicious attacks, posing a significant security risk. An insightful privacy-aware energy-efficient architecture using AIoMT for COVID-19 pandemic data handling is presented in this chapter. The goal is to secure sensitive medical records of patients and other stakeholders in the healthcare domain. Additionally, this chapter presents an elaborate discussion on improving energy efficiency and minimizing the communication cost to improve healthcare information security. Finally, the chapter highlights the open research issues and possible lines of future research in AIoMT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.