Abstract

Tissue phenotyping of the tumor microenvironment has a decisive role in digital profiling of intra-tumor heterogeneity, epigenetics, and progression of cancer. Most of the existing methods for tissue phenotyping often rely on time-consuming and error-prone manual procedures. Recently, with the advent of advanced technologies, these procedures have been automated using artificial intelligence techniques. In this paper, a novel deep histology heterogeneous feature aggregation network (HHFA-Net) is proposed based on visual and semantic information fusion for the detection of tissue phenotypes in colorectal cancer (CRC). We adopted and tested various data augmentation techniques to avoid computationally expensive stain normalization procedures and handle limited and imbalanced data problems. Three publicly available datasets are used in the experiments: CRC tissue phenotyping (CRC-TP), CRC histology (CRCH), and colon cancer histology (CCH). The proposed HHFA-Net achieves higher accuracies than the state-of-the-art methods for tissue phenotyping in CRC histopathology images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.