Abstract
SummaryMany groups of stingless insects have independently evolved mimicry of bees to fool would-be predators. To investigate this mimicry, we trained artificial intelligence (AI) algorithms—specifically, computer vision—to classify citizen scientist images of bees, bumble bees, and diverse bee mimics. For detecting bees and bumble bees, our models achieved accuracies of and , respectively. As a proxy for a natural predator, our models were poorest in detecting bee mimics that exhibit both aggressive and defensive mimicry. Using the explainable AI method of class activation maps, we validated that our models learn from appropriate components within the image, which in turn provided anatomical insights. Our t-SNE plot yielded perfect within-group clustering, as well as between-group clustering that grossly replicated the phylogeny. Ultimately, the transdisciplinary approaches herein can enhance global citizen science efforts as well as investigations of mimicry and morphology of bees and other insects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.