Abstract

Acute kidney injury (AKI) frequently complicates hospital admission, especially in the ICU or after major surgery, and is associated with high morbidity and mortality. The risk of developing AKI depends on the presence of preexisting comorbidities and the cause of the current disease. Besides, many other parameters affect the kidney function, such as the state of other vital organs, the host response, and the initiated treatment. Advancements in the field of informatics have led to the opportunity to store and utilize the patient-related data to train and validate models to detect specific patterns and, as such, predict disease states or outcomes. Machine-learning techniques have also been applied to predict AKI, as well as the patients' outcomes related to their AKI, such as mortality or the need for kidney replacement therapy. Several models have recently been developed, but only a few of them have been validated in external cohorts. In this article, we provide an overview of the machine-learning prediction models for AKI and its outcomes in critically ill patients and individuals undergoing major surgery. We also discuss the pitfalls and the opportunities related to the implementation of these models in clinical practices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.