Abstract
This proof-of-concept study assessed how confidently an artificial intelligence (AI) model can determine the sex of a fetus from an ultrasound image. Analysis was performed using 19,212 ultrasound image slices from a high-volume fetal sex determination practice. This dataset was split into a training set (11,769) and test set (7,443). A computer vision model was trained using a transfer learning approach with EfficientNetB4 architecture as base. The performance of the computer vision model was evaluated on the hold out test set. Accuracy, Cohen's Kappa and Multiclass Receiver Operating Characteristic area under the curve (AUC) were used to evaluate the performance of the model. The AI model achieved an Accuracy of 88.27% on the holdout test set and a Cohen's Kappa score 0.843. The ROC AUC score for Male was calculated to be 0.896, for Female a score of 0.897, for Unable to Assess a score of 0.916, and for Text Added a score of 0.981 was achieved. This novel AI model proved to have a high rate of fetal sex capture that could be of significant use in areas where ultrasound expertise is not readily available. · This is the first proof-of-concept AI model to determine fetal sex.. · This study adds to the growing research in ultrasound AI.. · Our findings demonstrate AI integration into obstetric care..
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.