Abstract

Artificial intelligence (AI) techniques play an important role in modeling, analysis, and prediction of the performance and control of renewable energy. The algorithms employed to model, control, or to predict performances of the energy systems are complicated involving differential equations, large computer power, and time requirements. Instead of complex rules and mathematical routines, AI techniques are able to learn the key information patterns within a multidimensional information domain. Design, control, and operation of solar energy systems require long-term series of meteorological data such as solar radiation, temperature, or wind data. Such long-term measurements are often non-existent for most of the interest locations or, wherever they are available, they suffer of a number of shortcomings (e.g. poor quality of data, insufficient long series, etc.). To overcome these problems AI techniques appear to be one of the strongest candidates. The chapter provides an overview of commonly used AI methodologies in solar energy, with a special emphasis on neural networks, fuzzy logic, and genetic algorithms. Selected AI applications to solar energy are outlined in this chapter. In particular, methods using the AI approach for the following applications are discussed: prediction and modeling of solar radiation, seizing, performances, and controls of the solar photovoltaic (PV) systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call