Abstract

<div>The use of data-driven algorithms for the integration or substitution of current production sensors is becoming a consolidated trend in research and development in the automotive field. Due to the large number of variables and scenarios to consider; however, it is of paramount importance to define a consistent methodology accounting for uncertainty evaluations and preprocessing steps, that are often overlooked in naïve implementations. Among the potential applications, the use of virtual sensors for the analysis of solid emissions in transient cycles is particularly appealing for industrial applications, considering the new legislations scenario and the fact that, to our best knowledge, no robust models have been previously developed. In the present work, the authors present a detailed overview of the problematics arising in the development of a virtual sensor, with particular focus on the transient particulate number (diameter <10 nm) emissions, overcome by leveraging data-driven algorithms and a profound knowledge of the underlying physical limitations. The workflow has been tested and validated using a complete dataset composed of more than 30 full driving cycles obtained from industrial experimentations, underlying the importance of each step and its possible variations. The final results show that a reliable model for transient particulate number emissions is possible and the accuracy reached is compatible with the intrinsic cycle to cycle variability of the phenomenon, while ensuring control over the quality of the predicted values, in order to provide valuable insight for the actions to perform.</div>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.