Abstract
In the last few years, visual sensors are deployed almost everywhere, generating a massive amount of surveillance video data in smart cities that can be inspected intelligently to recognize anomalous events. In this work, we present an efficient and robust framework to recognize anomalies from surveillance Big Video Data (BVD) using Artificial Intelligence of Things (AIoT). Smart surveillance is an important application of AIoT and we propose a two-stream neural network in this direction. The first stream comprises instant anomaly detection that is functional over resource-constrained IoT devices, whereas second phase is a two-stream deep neural network allowing for detailed anomaly analysis, suited to be deployed as a cloud computing service. Firstly, a self-pruned fine-tuned lightweight convolutional neural network (CNN) classifies the ongoing events as normal or anomalous in an AIoT environment. Upon anomaly detection, the edge device alerts the concerned departments and transmits the anomalous frames to cloud analysis center for their detailed evaluation in the second phase. The cloud analysis center resorts to the proposed two-stream network, modeled from the integration of spatiotemporal and optical flow features through the sequential frames. Fused features flow through a bi-directional long short-term memory (BD-LSTM) layer, which classifies them into their respective anomaly classes, e.g., assault and abuse. We perform extensive experiments over benchmarks built on top of the UCF-Crime and RWF-2000 datasets to test the effectiveness of our framework. We report a 9.88% and 4.01% increase in accuracy when compared to state-of-the-art methods evaluated over the aforementioned datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.