Abstract

Assessment of the spatial distribution of bedrock level (BL) as the lower boundary of soil layers is associated with many uncertainties. Increasing our knowledge about the spatial variability of BL through high resolution and more accurate predictive models is an important challenge for the design of safe and economical geostructures. In this paper, the efficiency and predictability of different artificial intelligence (AI)-based models in generating improved 3D spatial distributions of the BL for an area in Stockholm, Sweden, were explored. Multilayer percepterons, generalized feed-forward neural network (GFFN), radial based function, and support vector regression (SVR) were developed and compared to ordinary kriging geostatistical technique. Analysis of the improvement in progress using confusion matrixes showed that the GFFN and SVR provided closer results to realities. The ranking of performance accuracy using different statistical errors and precision–recall curves also demonstrated the superiority and robustness of the GFFN and SVR compared to the other models. The results indicated that in the absence of measured data the AI models are flexible and efficient tools in creating more accurate spatial 3D models. Analyses of confidence intervals and prediction intervals confirmed that the developed AI models can overcome the associated uncertainties and provide appropriate prediction at any point in the subsurface of the study area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call