Abstract

BackgroundRetained surgical items (RSI) are preventable events that pose a significant risk to patient safety. Current strategies for preventing RSIs rely heavily on manual instrument counting methods, which are prone to human error. This study evaluates the feasibility and performance of a deep learning-based computer vision model for automated surgical tool detection and counting.MethodsA novel dataset of 1,004 images containing 13,213 surgical tools across 11 categories was developed. The dataset was split into training, validation, and test sets at a 60:20:20 ratio. An artificial intelligence (AI) model was trained on the dataset, and the model’s performance was evaluated using standard object detection metrics, including precision and recall. To simulate a real-world surgical setting, model performance was also evaluated in a dynamic surgical video of instruments being moved in real-time.ResultsThe model demonstrated high precision (98.5%) and recall (99.9%) in distinguishing surgical tools from the background. It also exhibited excellent performance in differentiating between various surgical tools, with precision ranging from 94.0 to 100% and recall ranging from 97.1 to 100% across 11 tool categories. The model maintained strong performance on a subset of test images containing overlapping tools (precision range: 89.6–100%, and recall range 97.2–98.2%). In a real-time surgical video analysis, the model maintained a correct surgical tool count in all non-transition frames, with a median inference speed of 40.4 frames per second (interquartile range: 4.9).ConclusionThis study demonstrates that using a deep learning-based computer vision model for automated surgical tool detection and counting is feasible. The model’s high precision and real-time inference capabilities highlight its potential to serve as an AI safeguard to potentially improve patient safety and reduce manual burden on surgical staff. Further validation in clinical settings is warranted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.