Abstract
In the production of modern electric drives for battery electric vehicles, hairpin technology is used to increase the copper fill factor in the stator of a permanently excited synchronous machine. A central process in the production of these stators is the contacting of the hairpin ends by means of laser beam welding. This welding process is characterized by geometric and process-related deviations from previous process steps, which influence the result of the welded joint. It is desirable to find an in-process method for monitoring. As part of the process monitoring of welded joints, high-speed camera images are often used to detect weld spatter. These can be detected by a program based on a static algorithm. For this reason, a feasibility analysis is performed regarding the application of AI for the detection of spatters, in which the methods of semantic segmentation and single-image classification prove to be useful. In a preliminary experiment, three base networks for each of the two methods are evaluated with respect to the best training results. The single-image classification method will then be extended by a subsequent static algorithm, so that a hybrid use of AI and static algorithm will be investigated. The evaluation and final comparison of all evaluation methods is performed using data from a welding experiment. It turns out that the hybrid approach of single-image classification and static algorithm has numerous advantages in the detection of spatter compared to semantic segmentation and the static algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.