Abstract

Abstract Background Our previous experience with Artificial Intelligence (AI)-conducted EKG characterization displayed outstanding results in fast and reliable identification of Normal EKGs within the International Telemedical System (ITMS)'s massive record repository. By expanding the array of recognizable cardiovascular entities, we upgraded our methodology to accurately discriminate an anomaly amongst a highly complex database of EKG records. Purpose To present a feasible AI-guided filter that can accurately discriminate and classify Normal and Abnormal EKG records within a multilabeled cardiologist-annotated EKG database. Methods ITMS developed and tested the “One Click”' process, a “Normal/Abnormal” EKG assessing AI algorithm, by incorporating it into their digital EKG reading platform where cardiologists continuously report their findings remotely in real time. To ameliorate the diagnostic range of the algorithm, a separate dataset of 121,641 12-lead EKG records was consolidated from the ITMS database from October 2011 to January 2019. Only de-identified data was used. Preprocessing: The first 2s of each short lead and 9s of the long lead were considered. Limb leads I, II and III; and precordial leads V1, V2, V3, and V5 were used. The mean was removed from each lead. AI models/Classification: Two models were created and tested independently based on the method of EKG acquisition (69,852 records transtelephonic [TTP]; 52,259 mobile transmission [MOB]). Each record is categorized into six disjoint classes based on the most common types of cardiac disorders (Low/null co-occurrence pathologies in these datasets were grouped into analogous groups). Training/Testing: Distribution of both sets per transmission type was performed through a greedy algorithm, which identified multiple diagnoses per EKG record and labeled it separately to the corresponding group, ensuring sufficient samples per class. Detailed class distribution is shown below. An inception convolutional neural network was implemented; “Normal” or “Abnormal” labels were assigned to each EKG record independently and were compared to cardiologists' reports; performance indicators were calculated for each model and group. Results MOB model accrued an average accuracy of 86.7%; sensitivity of 90.5%; and specificity of 83.9%. TTP model yielded an average accuracy of 77.2%; sensitivity of 91.1%; and specificity of 69.4% (Lower values were attributed to the “Ventricular Complexes” group, which challenged the algorithm by having a smaller ratio of abnormal exams). Detailed results of each training set are shown below. Conclusion Providing an effective and reliable multilabel-capable EKG triaging tool remains a challenging but attainable goal. Continuous systematic enhancement of our AI-driven methodology has led us to satisfactory, yet imperfect results which compel us to further study and improve our efforts to provide a trustworthy cardiologist-friendly triage device. Funding Acknowledgement Type of funding source: None

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call