Abstract

To evaluate the effectiveness of an artificial intelligence (AI) in radiology literacy course on participants from nine radiology residency programs in the Southeast and Mid-Atlantic United States. A week-long AI in radiology course was developed and included participants from nine radiology residency programs in the Southeast and Mid-Atlantic United States. Ten 30 minutes lectures utilizing a remote learning format covered basic AI terms and methods, clinical applications of AI in radiology by four different subspecialties, and special topics lectures on the economics of AI, ethics of AI, algorithm bias, and medicolegal implications of AI in medicine. A proctored hands-on clinical AI session allowed participants to directly use an FDA cleared AI-assisted viewer and reporting system for advanced cancer. Pre- and post-course electronic surveys were distributed to assess participants' knowledge of AI terminology and applications and interest in AI education. There were an average of 75 participants each day of the course (range: 50-120). Nearly all participants reported a lack of sufficient exposure to AI in their radiology training (96.7%, 90/93). Mean participant score on the pre-course AI knowledge evaluation was 8.3/15, with a statistically significant increase to 10.1/15 on the post-course evaluation (p= 0.04). A majority of participants reported an interest in continued AI in radiology education in the future (78.6%, 22/28). A multi-institutional AI in radiology literacy course successfully improved AI education of participants, with the majority of participants reporting a continued interest in AI in radiology education in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.