Abstract
With the rising demand for in vitro fertilization (IVF) cycles, there is a growing need for innovative techniques to optimize procedure outcomes. One such technique is time-lapse system (TLS) for embryo incubation, which minimizes environmental changes in the embryo culture process. TLS also significantly advances predicting embryo quality, a crucial determinant of IVF cycle success. However, the current subjective nature of embryo assessments is due to inter- and intra-observer subjectivity, resulting in highly variable results. To address this challenge, reproductive medicine has gradually turned to artificial intelligence (AI) to establish a standardized and objective approach, aiming to achieve higher success rates. Extensive research is underway investigating the utilization of AI in TLS to predict multiple outcomes. These studies explore the application of popular AI algorithms, their specific implementations, and the achieved advancements in TLS. This review aims to provide an overview of the advances in AI algorithms and their particular applications within the context of TLS and the potential challenges and opportunities for further advancements in reproductive medicine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.