Abstract

Neural network-based solutions are under development to alleviate physicians from the tedious task of small-bowel capsule endoscopy reviewing. Computer-assisted detection is a critical step, aiming to reduce reading times while maintaining accuracy. Weakly supervised solutions have shown promising results; however, video-level evaluations are scarce, and no prospective studies have been conducted yet. Automated characterization (in terms of diagnosis and pertinence) by supervised machine learning solutions is the next step. It relies on large, thoroughly labeled databases, for which preliminary "ground truth" definitions by experts are of tremendous importance. Other developments are under ways, to assist physicians in localizing anatomical landmarks and findings in the small bowel, in measuring lesions, and in rating bowel cleanliness. It is still questioned whether artificial intelligence will enter the market with proprietary, built-in or plug-in software, or with a universal cloud-based service, and how it will be accepted by physicians and patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.