Abstract
Realistically predicting earthquake is critical for seismic risk assessment, prevention and safe design of major structures. Due to the complex nature of seismic events, it is challengeable to efficiently identify the earthquake response and extract indicative features from the continuously detected seismic data. These challenges severely impact the performance of traditional seismic prediction models and obstacle the development of seismology in general. Taking their advantages in data analysis, artificial intelligence (AI) techniques have been utilized as powerful statistical tools to tackle these issues. This typically involves processing massive detected data with severe noise to enhance the seismic performance of structures. From extracting meaningful sensing data to unveiling seismic events that are below the detection level, AI assists in identifying unknown features to more accurately predicting the earthquake activities. In this focus paper, we provide an overview of the recent AI studies in seismology and evaluate the performance of the major AI techniques including machine learning and deep learning in seismic data analysis. Furthermore, we envision the future direction of the AI methods in earthquake engineering which will involve deep learning-enhanced seismology in an internet-of-things (IoT) platform.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.