Abstract

Radiation therapy has dramatically changed with the advent of computed tomography and intensity modulation. This added complexity to the workflow but allowed for more precise and reproducible treatment. As a result, these advances required the accurate delineation of many more volumes, raising questions about how to delineate them, in a uniform manner across centers. Then, as computing power improved, reverse planning became possible and three-dimensional dose distributions could be generated. Artificial intelligence offers the opportunity to make such workflow more efficient while increasing practice homogeneity. Many artificial intelligence-based tools are being implemented in routine practice to increase efficiency, reduce workload and improve homogeneity of treatments. Data retrieved from this workflow could be combined with clinical data and omic data to develop predictive tools to support clinical decision-making process. Such predictive tools are at the stage of proof-of-concept and need to be explainatory, prospectively validated, and based on large and multicenter cohorts. Nevertheless, they could bridge the gap to personalized radiation oncology, by personalizing oncologic strategies, dose prescriptions to tumor volumes and dose constraints to organs at risk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.