Abstract
Artificial intelligence has seen an incredibly fast development in recent years. Many novel technologies for property prediction of drug molecules as well as for the design of novel molecules were introduced by different research groups. These artificial intelligence-based design methods can be applied for suggesting novel chemical motifs in lead generation or scaffold hopping as well as for optimization of desired property profiles during lead optimization. In lead generation, broad sampling of the chemical space for identification of novel motifs is required, while in the lead optimization phase, a detailed exploration of the chemical neighborhood of a current lead series is advantageous. These different requirements for successful design outcomes render different combinations of artificial intelligence technologies useful. Overall, we observe that a combination of different approaches with tailored scoring and evaluation schemes appears beneficial for efficient artificial intelligence-based compound design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.