Abstract

The ripples of artificial intelligence are being felt in various sectors of human life. Machine learning, a subset of artificial intelligence, extracts information from large databases of information and is gaining traction in various fields of cardiology. In this review, we highlight noteworthy examples of machine learning utilization in echocardiography, nuclear cardiology, computed tomography, and magnetic resonance imaging over the past year. In the past year, machine learning (ML) has expanded its boundaries in cardiology with several positive results. Some studies have integrated clinical and imaging information to further augment the accuracy of these ML algorithms. All the studies mentioned in this review have clearly demonstrated superior results of ML in relation to conventional approaches for identifying obstructions or predicting major adverse events in reference to conventional approaches. As the influx of data arriving from gradually evolving technologies in health care and wearable devices continues to be more complex, ML may serve as the bridge to transcend the gap between health care and patients in the future. In order to facilitate a seamless transition between both, a few issues must be resolved for a successful implementation of ML in health care.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.