Abstract

Artificial intelligence (AI) can acquire characteristics that are not yet known to humans through extensive learning, enabling to handle large amounts of pathology image data. Divided into machine learning and deep learning, AI has the advantage of handling large amounts of data and processing image analysis, consequently it also has a great potential in accurately assessing tumour microenvironment (TME) models. With the complex composition of the TME, in-depth study of TME contributes to new ideas for treatment, assessment of patient response to postoperative therapy and prognostic prediction. This leads to a review of the development of AI's application in TME assessment in this study, provides an overview of AI techniques applied to medicine, delves into the application of AI in analysing the quantitative and spatial location characteristics of various cells (tumour cells, immune and non-immune cells) in the TME, reveals the predictive prognostic value of TME and provides new ideas for tumour therapy, highlights the great potential for clinical applications. In addition, a discussion of its limitations and encouraging future directions for its practical clinical application is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.