Abstract

Fractures around the knee joint are inherently complex in terms of treatment; complication rates are high, and they are difficult to diagnose on a plain radiograph. An automated way of classifying radiographic images could improve diagnostic accuracy and would enable production of uniformly classified records of fractures to be used in researching treatment strategies for different fracture types. Recently deep learning, a form of artificial intelligence (AI), has shown promising results for interpreting radiographs. In this study, we aim to evaluate how well an AI can classify knee fractures according to the detailed 2018 AO-OTA fracture classification system. We selected 6003 radiograph exams taken at Danderyd University Hospital between the years 2002-2016, and manually categorized them according to the AO/OTA classification system and by custom classifiers. We then trained a ResNet-based neural network on this data. We evaluated the performance against a test set of 600 exams. Two senior orthopedic surgeons had reviewed these exams independently where we settled exams with disagreement through a consensus session. We captured a total of 49 nested fracture classes. Weighted mean AUC was 0.87 for proximal tibia fractures, 0.89 for patella fractures and 0.89 for distal femur fractures. Almost ¾ of AUC estimates were above 0.8, out of which more than half reached an AUC of 0.9 or above indicating excellent performance. Our study shows that neural networks can be used not only for fracture identification but also for more detailed classification of fractures around the knee joint.

Highlights

  • Fractures around the knee joint are inherently complex with high risk of complications

  • We captured a total of 49 nested fracture classes

  • Our study shows that neural networks can be used for fracture identification and for more detailed classification of fractures around the knee joint

Read more

Summary

Introduction

Fractures around the knee joint are inherently complex with high risk of complications. Inexperience and lack of time when interpreting diagnostic images increases the risk of human error as a cause for misdiagnosis [3,4,5,6]. We believe that computer aided interpretation of radiographs could be of use both in helping clinicians properly assess the initial fracture as well as in retrospectively reviewing a large amount of fractures to better understand the optimal treatment regime. Fractures around the knee joint are inherently complex in terms of treatment; complication rates are high, and they are difficult to diagnose on a plain radiograph. An automated way of classifying radiographic images could improve diagnostic accuracy and would enable production of uniformly classified records of fractures to be used in researching treatment strategies for different fracture types. We aim to evaluate how well an AI can classify knee fractures according to the detailed 2018 AO-OTA fracture classification system

Objectives
Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.