Abstract

Sepsis may lead to kidney function decline in patients with chronic kidney disease (CKD), and the deleterious effect may persist in patients who survive sepsis. We used a machine learning approach to predict the risk of end-stage renal disease (ESRD) in sepsis survivors. A total of 11,661 sepsis survivors were identified from a single-center database of 112,628 CKD patients between 2010 and 2018. During a median follow-up of 3.5 years, a total of 1366 (11.7%) sepsis survivors developed ESRD after hospital discharge. We adopted the random forest, extra trees, extreme gradient boosting, light gradient boosting machine (LGBM), and gradient boosting decision tree (GBDT) algorithms to predict the risk of ESRD development among these patients. GBDT yielded the highest area under the receiver operating characteristic curve of 0.879, followed by LGBM (0.868), and extra trees (0.865). The GBDT model revealed the strong effect of estimated glomerular filtration rates <25 mL/min/1.73 m2 at discharge in predicting ESRD development. In addition, hemoglobin and proteinuria were also essential predictors. Based on a large-scale dataset, we established a machine learning model computing the risk for ESRD occurrence among sepsis survivors with CKD. External validation is required to evaluate the generalizability of this model.

Highlights

  • Academic Editors: Yu-Wei Fang, Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan

  • Sodium/glucose cotransporter 2 (SGLT2) inhibitors have been proven beneficial in the deceleration of chronic kidney disease (CKD) progression, and less than 1% of patients were prescribed this class of drugs

  • Our results showed that machine learning models trained with the best performing clinical variables might predict the end-stage renal disease (ESRD) development more accurately than a conventional risk scoring system

Read more

Summary

Introduction

Sepsis may lead to kidney function decline in patients with chronic kidney disease (CKD), and the deleterious effect may persist in patients who survive sepsis. We used a machine learning approach to predict the risk of end-stage renal disease (ESRD) in sepsis survivors. A total of 11,661 sepsis survivors were identified from a single-center database of 112,628 CKD patients between 2010 and. We adopted the random forest, extra trees, extreme gradient boosting, light gradient boosting machine (LGBM), and gradient boosting decision tree (GBDT) algorithms to predict the risk of ESRD development among these patients. The GBDT model revealed the strong effect of estimated glomerular filtration rates.

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.