Abstract

Aim of the studyThis study aimed to develop an artificial intelligence (AI) model capable of predicting shockable rhythms from electrocardiograms (ECGs) with compression artifacts using real-world data from emergency department (ED) settings. Additionally, we aimed to explore the black box nature of AI models, providing explainability. MethodsThis study is retrospective, observational study using a prospectively collected database. Adult patients who presented to the ED with cardiac arrest or experienced cardiac arrest in the ED between September 2021 and February 2024 were included. ECGs with a compression artifact of 5 s before every rhythm check were used for analysis. The AI model was designed based on convolutional neural networks. The ECG data were assigned into training, validation, and testing sets on a per-patient basis to ensure that ECGs from the same patient did not appear in multiple sets. Gradient-weighted class activation mapping was employed to demonstrate AI explainability. ResultsA total of 1,889 ECGs with compression artifacts from 172 patients were used. The area under the receiver operating characteristic curve (AUROC) for shockable rhythm prediction was 0.8672 (95% confidence interval [CI]: 0.8161–0.9122). The AUROCs for manual and mechanical compression were 0.8771 (95% CI: 0.8054–0.9408) and 0.8466 (95% CI: 0.7630–0.9138), respectively. ConclusionThis study was the first to accurately predict shockable rhythms during compression using an AI model trained with actual patient ECGs recorded during resuscitation. Furthermore, we demonstrated the explainability of the AI. This model can minimize interruption of cardiopulmonary resuscitation and potentially lead to improved outcomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call