Abstract

BackgroundInflammatory Bowel Diseases with its complexity and heterogeneity could benefit from the increased application of Artificial Intelligence in clinical management.AimTo accurately predict adverse outcomes in patients with IBD using advanced computational models in a nationally representative dataset for potential use in clinical practice.MethodsWe built a training model cohort and validated our result in a separate cohort. We used LASSO and Ridge regressions, Support Vector Machines, Random Forests and Neural Networks to balance between complexity and interpretability and analyzed their relative performances and reported the strongest predictors to the respective models. The participants in our study were patients with IBD selected from The OptumLabs® Data Warehouse (OLDW), a longitudinal, real-world data asset with de-identified administrative claims and electronic health record (EHR) data.ResultsWe included 72,178 and 69,165 patients in the training and validation set, respectively. In total, 4.1% of patients in the validation set were hospitalized, 2.9% needed IBD-related surgeries, 17% used long-term steroids and 13% of patients were initiated with biological therapy. Of the AI models we tested, the Random Forest and LASSO resulted in high accuracies (AUCs 0.70–0.92). Our artificial neural network performed similarly well in most of the models (AUCs 0.61–0.90).ConclusionsThis study demonstrates feasibility of accurately predicting adverse outcomes using complex and novel AI models on large longitudinal data sets of patients with IBD. These models could be applied for risk stratification and implementation of preemptive measures to avoid adverse outcomes in a clinical setting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.