Abstract
PurposeThe purpose of this study is to evaluate the efficacy of an artificial intelligence (AI) model designed to identify active bleeding in digital subtraction angiography images for upper gastrointestinal bleeding.MethodsAngiographic images were retrospectively collected from mesenteric and celiac artery embolization procedures performed between 2018 and 2022. This dataset included images showing both active bleeding and non-bleeding phases from the same patients. The images were labeled as normal versus images that contain active bleeding. A convolutional neural network was trained and validated to automatically classify the images. Algorithm performance was tested in terms of area under the curve, accuracy, sensitivity, specificity, F1 score, positive and negative predictive value.ResultsThe dataset included 587 pre-labeled images from 142 patients. Of these, 302 were labeled as normal angiogram and 285 as containing active bleeding. The model’s performance on the validation cohort was area under the curve 85.0 ± 10.9% (standard deviation) and average classification accuracy 77.43 ± 4.9%. For Youden’s index cutoff, sensitivity and specificity were 85.4 ± 9.4% and 81.2 ± 8.6%, respectively.ConclusionIn this study, we explored the application of AI in mesenteric and celiac artery angiography for detecting active bleeding. The results of this study show the potential of an AI-based algorithm to accurately classify images with active bleeding. Further studies using a larger dataset are needed to improve accuracy and allow segmentation of the bleeding.Graphical abstract
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.