Abstract
Artificial intelligence (AI), including deep learning methods that leverage neural network-based algorithms, hold significant promise for dermatopathology and other areas of diagnostic pathology in research and clinical practice. There has been significant progress over past several years in applying AI to analyzing digital histopathology images for diagnosis. While much work in AI analysis of histopathology data remains investigational, recent regulatory agency approval in Europe and United States of AI-assisted tools for clinical use in histopathologic diagnosis of prostate and breast cancer herald broader movement of AI into the clinical diagnostic realm of anatomic pathology, including dermatopathology. However, significant challenges remain in translating AI from research into clinical practice, including algorithmic real-world performance, robustness to variation in data sets and practice settings, effective integration into clinical workflows, and cost effectiveness. This review introduces core concepts and terminology in AI, and assesses current progress and challenges in applying AI to dermatopathology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.