Abstract
Although atrial fibrillation (AF) is the most common cardiac arrhythmia, its early identification, diagnosis, and treatment is still challenging. Due to its heterogeneous mechanisms and risk factors, targeting an individualized treatment of AF demands a large amount of patient data to identify specific patterns. Artificial intelligence (AI) algorithms are particularly well suited for treating high-dimensional data, predicting outcomes, and eventually, optimizing strategies for patient management. The analysis of large patient samples combining different sources of information such as blood biomarkers, electrical signals, and medical images opens a new paradigm for improving diagnostic algorithms. In this review, we summarize suitable AI techniques for this purpose. In particular, we describe potential applications for understanding the structural and functional bases of the disease, as well as for improving early noninvasive diagnosis, developing more efficient therapies, and predicting long-term clinical outcomes of patients with AF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Heart and Circulatory Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.