Abstract

AbstractThe transition towards renewable electricity provides opportunities for manufacturing companies to save electricity costs through participating in demand response programs. End-to-end implementation of demand response systems focusing on manufacturing power consumers is still challenging due to multiple stakeholders and subsystems that generate a heterogeneous and large amount of data. This work develops an approach utilizing artificial intelligence for a demand response system that optimizes industrial consumers’ and prosumers’ production-related electricity costs according to time-variable electricity tariffs. It also proposes a semantic middleware architecture that utilizes an ontology as the semantic integration model for handling heterogeneous data models between the system’s modules. This paper reports on developing and evaluating multiple machine learning models for power generation forecasting and load prediction, and also mixed-integer linear programming as well as reinforcement learning for production optimization considering dynamic electricity pricing represented as Green Electricity Index (GEI). The experiments show that the hybrid auto-regressive long-short-term-memory model performs best for solar and convolutional neural networks for wind power generation forecasting. Random forest, k-nearest neighbors, ridge, and gradient-boosting regression models perform best in load prediction in the considered use cases. Furthermore, this research found that the reinforcement-learning-based approach can provide generic and scalable solutions for complex and dynamic production environments. Additionally, this paper presents the validation of the developed system in the German industrial environment, involving a utility company and two small to medium-sized manufacturing companies. It shows that the developed system benefits the manufacturing company that implements fine-grained process scheduling most due to its flexible rescheduling capacities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.