Abstract

Mobile edge computing (MEC) is one of the efficient technologies to provide satisfying quality of experience (QoE) for emerging computation-intensive applications in internet of things (IoT). However, some new challenges will be encountered when MEC is applied in a large-scale IoT with massive access devices or heavy traffic loads such as load balancing and traffic offloading. Aiming at the solution of these problems, this paper proposes a learning-based traffic control architecture for IoT with MEC. Moreover, a deep-learning-based load balancing framework is developed to control user association in IoT. The user association is determined at each IoT access points (IAP) by the deep neural network (DNN), which is the duplication of the well-trained DNN with the global network information. In addition, we propose a reinforcement-learning-based partial traffic offloading scheme to reduce the traffic origination. The IoT devices are able to independently decide its offloading radio according to the channel quality information, service requirement, and workload of the IAP. Simulation results indicate that the proposed deep-learning-based load balancing scheme is able to achieve uniform traffic distribution, and meanwhile our partial offloading policy can significantly reduce the network traffic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call