Abstract
The pasting features of eight varieties of rice flour with varying amylose content were characterized and then subjected to machine learning analysis in order to classify the rice varieties and predict their amylose content. The waxy rice flour with the least amylose showed a peak viscosity in the early stage of heating, and the high amylose rice flours had the highest final viscosity. Principal component analysis showed that 87.2% of the total variability was explained by the two principal components, which were mainly related to peak temperature and final viscosity. When the pasting features were used as a machine learning dataset for classification, the support vector machine classifier was the most effective in correctly classifying the rice flour varieties by showing a high accuracy and F1-score, followed by the decision tree and stochastic gradient descent. In addition, the integration of pasting features with machine learning analysis showed the potential to predict the amylose content of rice flours. These prediction performances were confirmed by validating the models with independent datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.