Abstract
ABSTRACT The economic burden of Type 2 Diabetes (T2D) on society has increased over time. Early prediction of diabetes and prediabetes can reduce treatment cost and improve intervention. The development of (pre)diabetes is associated with various health conditions that can be monitored by routine health checkups. This study aimed to develop amachine learning-based model for predicting (pre)diabetes. Our frameworks were based on 22,722 patient samples collected from 2013 to 2020 in ageneral hospital in Korea. The disease progression was divided into three categories based on fasting blood glucose: normal, prediabetes, and T2D. The risk factors at each stage were identified and compared. Based on the area under the curve, the support vector machine appeared to have optimal performance. At the normal and prediabetes stages, fasting blood glucose and HbA1c are prevalent risk features for the suggested models. Interestingly, HbA1c had the highest odds ratio among the features even in the normal stage (FBG is less than 100). In addition, factors related to liver function, such as gamma-glutamyl transpeptidase can be used to predict progression from normal to prediabetes, while factors related to renal function, such as blood urea nitrogen and creatinine, are prediction factors of T2D development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.