Abstract
9037 Background: Lung cancer is the most common cancer worldwide. Artificial intelligence (AI) platform using deep learning algorithms have made a remarkable progress in improving diagnostic accuracy of lung cancer. But AI diagnostic performance in identifying benign and malignant pulmonary nodules still needs improvement. We aimed to validate a Pulmonary Nodules Artificial Intelligence Diagnostic System (PNAIDS) by analyzing computed tomography (CT) imaging data. Methods: This real-world, multicentre, diagnostic study was done in five different tier hospitals in China. The CT images of patients, who were aged over 18 years and never had previous anti-cancer treatments, were retrieved from participating hospitals. 534 eligible patients with 5-30mm diameter pulmonary nodules identified by CT were planning to confirm with histopathological diagnosis. The performance of PNAIDS was also compared with respiratory specialists and radiologists with expert or competent degrees of expertise as well as Mayo Clinic’s model by area under the curve (AUC) and evaluated differences by calculating the 95% CIs using the Z-test method. 11 selected participants were tested circulating genetically abnormal cells (CACs) before surgery with doctors suggested. Results: 611 lung CT images from 534 individuals were used to test PNAIDS. The diagnostic accuracy, valued by AUC, in identifying benign and malignant pulmonary nodules was 0.765 (95%CI [0.729 - 0.798]). The diagnostic sensitivity of PNAIDS is 0.630(0.579 – 0.679), specificity is 0.753 (0.693 – 0.807). PNAIDS achieved diagnostic accuracy similar to that of the expert respiratory specialists (AUC difference: 0.0036 [-0.0426 - 0.0497]; p = 0.8801) and superior when compared with Mayo Clinic’s model (0.120 [0.0649 - 0.176], p < 0·0001), expert radiologists (0.0620 [0.0124 - 0.112], p = 0.0142) and competent radiologists (0.0751 [0.0248 - 0.125], p = 0.0034). 11 selected participants were suggested negative in AI results but positive in respiratory specialists’ result. 8 of them were malignant in histopathological diagnosis with tested more than 3 CACs in their blood. Conclusions: PNAIDS achieved high diagnostic accuracy in differential diagnoses between benign and malignant pulmonary nodules, with diagnostic accuracy similar to that of expert respiratory specialists and was superior to that of Mayo Clinic’s model and radiologists. CACs may be able to assist CT-based AI in improving their effectiveness but it still need more data to be proved. Clinical trial information: ChiCTR1900026233.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.