Abstract

Conventional power generation resources are depleting rapidly and world power sector has been moving towards renewable energy sources (RESs). In this paper nonlinear control for renewable energy and hybrid energy storage system (HESS) based DC microgrid (DCMG) has been presented. PV and wind energy being the renewable sources whereas fuel cell, battery and ultracapacitor constitute the HESS. The global mathematical model of the said system has been presented. Datasets of varying solar irradiance and temperature have been trained by Artificial Neural Network for the reference voltage generation of PV. Integral terminal sliding mode controller (ITSMC) has been proposed for the output DC bus voltage regulation. Lyapunov stability criterion has ensured the overall stability of the system. A comparison of ITSMC with SMC and Lyapunov redesign controller has also been presented. Grid connected battery electric vehicle charger with grid to vehicle (G2V) and vehicle to grid modes (V2G) has been presented being an application of DCMG. The proposed system has been validated by using MATLAB/Simulink (2020b). Moreover, the hardware in loop setup has been used to observe the real time applicability of the proposed controller.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call