Abstract

Malware, a lethal weapon of cyber attackers, is becoming increasingly sophisticated, with rapid deployment and self-propagation. In addition, modern malware is one of the most devastating forms of cybercrime, as it can avoid detection, make digital forensics investigation in near real-time impossible, and the impact of advanced evasion strategies can be severe and far-reaching. This makes it necessary to detect it in a timely and autonomous manner for effective analysis. This work proposes a new systematic approach to identifying modern malware using dynamic deep learning-based methods combined with heuristic approaches to classify and detect five modern malware families: adware, Radware, rootkit, SMS malware, and ransomware. Our symmetry investigation in artificial intelligence and cybersecurity analytics will enhance malware detection, analysis, and mitigation abilities to provide resilient cyber systems against cyber threats. We validated our approach using a dataset that specifically contains recent malicious software to demonstrate that the model achieves its goals and responds to real-world requirements in terms of effectiveness and efficiency. The experimental results indicate that the combination of behavior-based deep learning and heuristic-based approaches for malware detection and classification outperforms the use of static deep learning methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.