Abstract
Internet attacks pose a severe threat to most of the online resources and are a prime concern of security administrators these days. In spite of many efforts, the security techniques are unable to detect the intrusions accurately. Most of the methods suffer from the limitations of a high false positive rate, low detection rate and provide one solution which lacks the classification trade-offs. In this work, an effective two-stage method is proposed to produce a pool of non-dominating solutions or Pareto optimal solutions as base models and their ensembles for detecting the intrusions accurately. It generates Pareto optimal solutions to a chromosome structure in stage 1 formulating Pareto front. Whereas, another approximation to the Pareto front of optimal solutions is made to obtain non-dominating ensembles in the second stage. The final prediction ensemble solutions are computed from individual predictions using majority voting approach. Applicability of the suggested method is validated using benchmark dataset NSL-KDD dataset. The experimental results show that the recommended method provides better results than conventional ensemble techniques. The recommended method is also adequate to generate Pareto optimal solutions that address the issue of improving detection accuracy for minority as well as majority attack classes along with handling classification tradeoff problem. The proposed method resulted detection accuracy of 97% with FPR of 2% for KDD dataset respectively. The most attractive feature of the proposed method is that both generation of base classifier and their ensemble thereof are multi-objective in nature addressing the issue of low detection accuracy and classification tradeoffs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Visual Communication and Image Representation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.