Abstract
Mammography yields inevitable recall for indeterminate findings that need to be confirmed with additional views. To explore whether the artificial intelligence (AI) algorithm for mammography can reduce false-positive recall in patients who undergo the spot compression view. From January to December 2017, 236 breasts from 225 women who underwent the spot compression view due to focal asymmetry, mass, or architectural distortion on standard digital mammography were included. Three readers who were blinded to the study purpose, patient information, previous mammograms, following spot compression views, and any clinical or pathologic reports retrospectively reviewed 236 standard mammograms and determined the necessity of patient recall and the probability of malignancy per breast, first without and then with AI assistance. The performances of AI and the readers were evaluated with the recall rate, area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and accuracy. Among 236 examinations, 8 (3.4%) were cancers and 228 (96.6%) were benign. The recall rates of all three readers significantly decreased with AI assistance (P < 0.05). The reader-averaged recall rates significantly decreased with AI assistance regardless of breast composition (fatty breasts: 32.7% to 24.1%m P = 0.002; dense breasts: 33.6% to 21.2%, P < 0.001). The reader-averaged AUC increased with AI assistance and was comparable to that of standalone AI (0.835 vs. 0.895; P = 0.234). The reader-averaged specificity (71.2% to 79.8%, P < 0.001) and accuracy (71.3% to 79.7%, P < 0.001) significantly improved with AI assistance. AI assistance significantly reduced false-positive recall without compromising cancer detection in women with focal asymmetry, mass, or architectural distortion on standard digital mammography regardless of mammographic breast density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Acta Radiologica
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.