Abstract

The performance of supply chains significantly impacts the success of businesses. In addressing this critical aspect, this article presents a methodology for analyzing and predicting key performance indicators (KPIs) within supply chains characterized by limited, imprecise, and uncertain data. Drawing upon an extensive literature review, this study identifies 21 KPIs using the balanced scorecard (BSC) methodology as a performance measurement framework. While prior research has relied on the grey first-order one-variable GM (1,1) model to predict supply chain performance within constrained datasets, this study introduces an artificial intelligence approach, specifically a GM (1,1)-based artificial neural network (ANN) model, to enhance prediction precision. Unlike the traditional GM (1,1) model, the proposed approach evaluates performance based on the mean relative error (MRE). The results demonstrate a significant reduction in MRE levels, ranging from 77.09% to 0.23%, across various KPIs, leading to improved prediction accuracy. Notably, the grey neural network (GNN) model exhibits superior predictive accuracy compared to the GM (1,1) model. The findings of this study underscore the potential of the proposed artificial intelligence approach in facilitating informed decision-making by industrial managers, thereby fostering economic sustainability within enterprises across all operational tiers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call