Abstract

One of the effective factors to ensure the desirable operation of drip irrigation systems is the uniform emitter discharge, which is affected by operating pressure and temperature. Accurate estimation of this parameter is crucial for optimal irrigation system management and operation. In this research, the emitter outflow discharge was simulated through artificial intelligence (AI)-based approaches under a wide range of temperature (13−53 °C) and operating pressures (0–240 kPa) variations. The applied AI models included artificial neural networks (ANN), neuro-fuzzy sub-clustering (NF-SC), neuro-fuzzy c-Means clustering (NF-FCM), and least square support vector machine (LS-SVM). The input parameters matrix consisted of operating pressure, water temperature, discharge coefficient, pressure exponent and nominal discharge, while the ratio of measured discharge to nominal discharge (modified coefficient, M) was the output of the models. The applied models were assessed through the robust k-fold testing data scanning mode. The 5-agent Global Performance Indicator (GPI) was used for the final reliable ranking. The results showed that all the applied AI models with an average mean absolute error (MAE) of 8.8% had acceptable accuracy for estimating the modified M coefficient. According to the GPI, the LS-SVM model had the lowest error, followed by the NF-SC model with a slight difference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.