Abstract

Artificial intelligence technology is becoming more prevalent in health care as a tool to improve practice patterns and patient outcomes. This study assessed ability of a commercialized artificial intelligence (AI) mobile application to identify and improve bodyweight squat form in adult participants when compared to a physical therapist (PT). Participants randomized to AI group (n = 15) performed 3 squat sets: 10 unassisted control squats, 10 squats with performance feedback from AI, and 10 additional unassisted test squats. Participants randomized to PT group (n = 15) also performed 3 identical sets, but instead received performance feedback from PT. AI group intervention did not differ from PT group (log ratio of two odds ratios = − 0.462, 95% confidence interval (CI) (− 1.394, 0.471), p = 0.332). AI ability to identify a correct squat generated sensitivity 0.840 (95% CI (0.753, 0.901)), specificity 0.276 (95% CI (0.191, 0.382)), PPV 0.549 (95% CI (0.423, 0.669)), NPV 0.623 (95% CI (0.436, 0.780)), and accuracy 0.565 95% CI (0.477, 0.649)). There was no statistically significant association between group allocation and improved squat performance. Current AI had satisfactory ability to identify correct squat form and limited ability to identify incorrect squat form, which reduced diagnostic capabilities.Trial Registration NCT04624594, 12/11/2020, retrospectively registered.

Highlights

  • Artificial intelligence technology is becoming more prevalent in health care as a tool to improve practice patterns and patient outcomes

  • Correct and incorrect squats were tabulated for Artificial intelligence technology (AI) and the three evaluators

  • The most common feedback provided by AI was “neck extends too far upwards” (15%)

Read more

Summary

Introduction

Artificial intelligence technology is becoming more prevalent in health care as a tool to improve practice patterns and patient outcomes. This study assessed ability of a commercialized artificial intelligence (AI) mobile application to identify and improve bodyweight squat form in adult participants when compared to a physical therapist (PT). Participants randomized to AI group (n = 15) performed 3 squat sets: 10 unassisted control squats, 10 squats with performance feedback from AI, and 10 additional unassisted test squats. Participants randomized to PT group (n = 15) performed 3 identical sets, but instead received performance feedback from PT. AI ability to identify a correct squat generated sensitivity 0.840 (95% CI (0.753, 0.901)), specificity 0.276 (95% CI (0.191, 0.382)), PPV 0.549 (95% CI (0.423, 0.669)), NPV 0.623 (95% CI (0.436, 0.780)), and accuracy 0.565 95% CI (0.477, 0.649)). Current AI had satisfactory ability to identify correct squat form and limited ability to identify incorrect squat form, which reduced diagnostic capabilities

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call