Abstract

Laminins (Lm) are major components of basement membranes (BM), which polymerize to form a planar lattice on cell surface. Genetic alternations of Lm affect their oligomerization patterns and lead to failures in BM assembly manifesting in a group of human disorders collectively defined as Lm N-terminal domain lamininopathies (LN-lamininopathies). We have employed a recently determined cryo-EM structure of the Lm polymer node, the basic repeating unit of the Lm lattice, along with structure prediction and modeling to systematically analyze structures of twenty-three pathogenic Lm polymer nodes implicated in human disease. Our analysis provides the detailed mechanistic explanation how Lm mutations lead to failures in Lm polymerization underlining LN-lamininopathies. We propose the new categorization scheme of LN-lamininopathies based on the insight gained from the structural analysis. Our results can help to facilitate rational drug design aiming in the treatment of Lm deficiencies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call