Abstract
<h2>Summary</h2> To develop new generations of electrocatalysts, we need the accuracy of full explicit solvent quantum mechanics (QM) for practical-sized nanoparticles and catalysts. To do this, we start with the RexPoN reactive force field that provides higher accuracy than density functional theory (DFT) for water and combine it with QM to accurately include long-range interactions and polarization effects to enable reactive simulations with QM accuracy in the presence of explicit solvent. We apply this RexPoN-embedded QM (ReQM) to reactive simulations of electrocatalysis, demonstrating that ReQM accurately replaces DFT water for computing the Raman frequencies of reaction intermediates during CO<sub>2</sub> reduction to ethylene. Then, we illustrate the power of this approach by combining with machine learning to predict the performance of about 10,000 surface sites and identify the active sites of solvated gold (Au) nanoparticles and dealloyed Au surfaces. This provides an accurate but practical way to design high-performance electrocatalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.