Abstract
For next generation IoT applications, edge devices provides most of the computing resources close to the proximity of the end users. These devices having built-in intelligence using various AI techniques can take independent decisions in the environment where these are deployed. Motivated from these concerns, We suggest a cognitive intrusion security system to maintain the credibility of search engine results, which eliminates the advertising images from penetrating the image database of the web browser. The proposed framework provides edge intelligence for web data filteration and detects the web spam by considering three different layers, i.e., data collection services, edge computing services, and cloud services. The target is to detect the malicious images. Firstly, the features of an image such as mean, image gradient, entropy are fetched and then the retrieved data is processed in the proposed framework. Deep learning algorithms are used for the validation of the proposed system. By evaluating it on real-time collected dataset, it resulted in an accuracy of 98.77%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.