Abstract

This perspective piece has two goals: first, to describe issues related to artificial intelligence-based applications for cancer control as they may impact health inequities or disparities; and second, to report on a review of systematic reviews and meta-analyses of artificial intelligence-based tools for cancer control to ascertain the extent to which discussions of justice, equity, diversity, inclusion, or health disparities manifest in syntheses of the field's best evidence. We found that, while a significant proportion of existing syntheses of research on AI-based tools in cancer control use formal bias assessment tools, the fairness or equitability of models is not yet systematically analyzable across studies. Issues related to real-world use of AI-based tools for cancer control, such as workflow considerations, measures of usability and acceptance, or tool architecture, are more visible in the literature, but still addressed only in a minority of reviews. Artificial intelligence is poised to bring significant benefits to a wide range of applications in cancer control, but more thorough and standardized evaluations and reporting of model fairness are required to build the evidence base for AI-based tool design for cancer and to ensure that these emerging technologies promote equitable healthcare.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.