Abstract
Millions of individuals around the world have been impacted by the ongoing coronavirus outbreak, known as the COVID-19 pandemic. Blockchain, Artificial Intelligence (AI), and other cutting-edge digital and innovative technologies have all offered promising solutions in such situations. AI provides advanced and innovative techniques for classifying and detecting symptoms caused by the coronavirus. Additionally, Blockchain may be utilized in healthcare in a variety of ways thanks to its highly open, secure standards, which permit a significant drop in healthcare costs and opens up new ways for patients to access medical services. Likewise, these techniques and solutions facilitate medical experts in the early diagnosis of diseases and later in treatments and sustaining pharmaceutical manufacturing. Therefore, in this work, a smart blockchain and AI-enabled system is presented for the healthcare sector that helps to combat the coronavirus pandemic. To further incorporate Blockchain technology, a new deep learning-based architecture is designed to identify the virus in radiological images. As a result, the developed system may offer reliable data-gathering platforms and promising security solutions, guaranteeing the high quality of COVID-19 data analytics. We created a multi-layer sequential deep learning architecture using a benchmark data set. In order to make the suggested deep learning architecture for the analysis of radiological images more understandable and interpretable, we also implemented the Gradient-weighted Class Activation Mapping (Grad-CAM) based colour visualization approach to all of the tests. As a result, the architecture achieves a classification accuracy rate of 0.96, thus producing excellent results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM transactions on computational biology and bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.