Abstract

We calculate the time path of prices generated by algorithmic pricing games that differ in their learning protocols. Asynchronous learning occurs when the algorithm only learns about the return from the action it actually took. Synchronous learning occurs when the artificial intelligence conducts counterfactuals to learn about the returns it would have earned had it taken an alternative action. In a simple market setting, we show that synchronous updating can lead to competitive pricing, while asynchronous updating can lead to pricing close to monopoly levels. However, building simple economic reasoning into the asynchronous algorithms significantly modifies the prices it generates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.