Abstract

The application of artificial intelligence methods to electronic patient records paves the way for large-scale analysis of multimodal data. Such population-wide data describing deep phenotypes composed of thousands of features are now being leveraged to create data-driven algorithms, which in turn has led to improved methods for early cancer detection and screening. Remaining challenges include establishment of infrastructures for prospective testing of such methods, ways to assess biases given the data, and gathering of sufficiently large and diverse datasets that reflect disease heterogeneities across populations. This Review provides an overview of artificial intelligence methods designed to detect cancer early, including key aspects of concern (eg, the problem of data drift-when the underlying health-care data change over time), ethical aspects, and discrepancies between access to cancer screening in high-income countries versus low-income and middle-income countries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.