Abstract

This paper proposes a new methodology for automated design of power electronic systems realized through the use of artificial intelligence. Existing approaches do not consider the system's reliability as a performance metric or are limited to reliability evaluation for a certain fixed set of design parameters. The method proposed in this paper establishes a functional relationship between design parameters and reliability metrics, and uses them as the basis for optimal design. The first step in this new framework is to create a nonparametric surrogate model of the power converter that can quickly map the variables characterizing the operating conditions (e.g., ambient temperature and irradiation) and design parameters (e.g., switching frequency and dc link voltage) into variables characterizing the thermal stress of a converter (e.g., mean temperature and temperature variation of its devices). This step can be carried out by training a dedicated artificial neural network (ANN) either on experimental or simulation data. The resulting network is named as $\text{ANN}_{1}$ and can be deployed as an accurate surrogate converter model. This model can then be used to quickly map the yearly mission profile into a thermal stress profile of any selected device for a large set of design parameter values. The resulting data is then used to train $\text{ANN}_{2}$ , which becomes an overall system representation that explicitly maps the design parameters into a yearly lifetime consumption. To verify the proposed methodology, $\text{ANN}_{2}$ is deployed in conjunction with the standard converter design tools on an exemplary grid-connected PV converter case study. This study showed how to find the optimal balance between the reliability and output filter size in the system with respect to several design constraints. This paper is also accompanied by a comprehensive dataset that was used for training the ANNs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.